Archive

Posts Tagged ‘3D scanner’

Scanning Results Keep Getting Better

May 20th, 2015 Comments off
We have  steadily improved our scanning results over the last 6 weeks by modifying hardware, writing new software, and tuning over a dozen variables.  The video below demonstrates the effect of our enhanced noise reduction: Low noise in 3D models is important for two reasons:
  1. Low noise 3D looks better.  
  2. Low noise 3D models are easier to compress & display.  In many cases smoothing should allow us to reduce a scan to less than 1% of the original size.
Noise reduction & smoothing has been around for decades, but there is a delicate balance between appropriate smoothing, and over-smoothing which can make objects look like jelly beans.  Our past experience with generic smoothing routines has been disappointing because they often round edges & eliminate important details.  Why Our Smoothing Is Better Than Other Options Instead of applying generic smoothing filters to our data after the 3D data has been created, we apply smoothing during the creation of 3D data.  We can achieve an optimal level of smoothness because our smoothing software has intimate knowledge of the scanner hardware and configuration.  Stereo scanners like ours can be accurate to a fraction of a millimeter up close, but precision falls off as the distance from the scanner increases.  Our smoothing routines use this fact to smooth our 3D data with more finesse.

9 Months of Software Enhancements Have Cut Errors in Half Again

November 11th, 2013 Comments off
This year's enhancements to the image processing routines in our stereo scanning software has improved processing speed and 3D model accuracy. Comparisons between our current results and those from 9 months ago show that we have reduced the magnitude of one type of geometric error in our 3D scans by a factor of 2 to 4, and we project that future software and hardware enhancements will allow us to cut the noise in half at least 5 more times. Finding/developing a benchmark to clearly reflect these results has been tricky. In the previous post we compared scans by superimposing them on each other and then comparing the non-linearity of flat surfaces. Because each surface should be flat, any deviation from a straight line represents a scanning error. We used standard deviation analysis to determine that our improvements had cut the error in half for this specific test, but that one number doesn't tell the whole story. What other metrics and ratios should we use to judge the quality of the 3D scans that our scanner produces? Until we come up with a more useful metric to quantify the relative quality, we will use human perception to evaluate the quality of scans. The video below shows the results of our last 9 months of software enhancement.

Making Good Photorealistic 3D Models from 2D Pictures

March 25th, 2011 Comments off
Making 3D models is time consuming. Recent programs like Google's SketchUp (it's free) have simplified the process of making digital 3D models, but SketchUp is definitely not automatic.

Example of photorealistic SketchUp Model created manually and placed into Google Earth

To make a 3D model look photorealistic, real world pictures can be "projected" onto a SketchUp model. While this technique can add realism, SketchUp is still a manual approach that can take hours, weeks, or even months to produce good results.   Many in the 3D and animation world would like an automatic process that can produce 3D models from a series of 2D pictures. Our goal is to create a system that automatically produces photorealistic digital 3D models that can be processed in existing 3D programs like 3D Studio Max, GeoMagic, or SketchUp. The Microsoft Photosynth project can automatically create 3D-like effects (some call it 2.5D) by automatically processing 10s to 100s of 2D images. While this process is automatic, it does not produce a 3D model that can be used by other programs. Garbage in........ Garbage out. A challenge for Photosynth and other automatic stitching/panoramic approaches is that they often use regular uncalibrated cameras. While this is convenient, it forces the programs to analyze each camera image to determine the field of view and other essential lens/camera characteristics: the cameras are essentially calibrated during processing. Precisely calibrating a camera is challenging in a lab setting, so it is reasonable to expect that on-the-fly calibration results will not be very precise. Any errors in the camera calibration step will build on each other and cause problems later in the process. While calibration problems cause annoying alignment errors in panoramic 2D & 2.5D images, they cause unacceptable distortion in 3D models. Here is a list of variables that must be determined before using a 2D image to create an accurate 3D model: Camera Variables that must be determined for Precise Stereoscopic 3D Reconstruction - The exact center of the image sensor behind the lens: sensors are normally a few pixels off-center - Camera Horizontal & Vertical Field of View to within 1/100 degree - Camera lens distortion correction variables: Pincushion, barrel, radial. - Camera horizontal orientation (0.00 to 360.00 degrees) to within 1/100 of a degree - Camera vertical orientation (tilt, roll) to within 1/100 degree - Camera location for each shot: X, Y, and Z coordinates to within one millimeter - Camera dynamic range and gamma The quality of a 3D model is limited by the quality of the 2D pictures used to make it. Here's how we calibrate our camera system: 1) Design and build a calibration routine/facility to determine the key camera variables. 2) Design and build a system of cameras that can be easily calibrated. The important point is that the camera system and the calibration system need to be built for each other: they literally fit together like a lock and key. As we see it, a calibrated system produces "clean" images that simplify and speed up the 3D reconstruction process. Our current 8-camera system (Proto-4F) has been designed to produce sets of calibrated images, and these images are used to automatically produce 3D models.

Example 3D Model Using the 3D-360

February 28th, 2011 1 comment
This 3D model includes alignment errors....... and we know how to fix them. Our objective is to develop an automatic 3D model creation system, and we know from experience that the errors will get smaller as our calibration process is refined. Below is a description of how this model was made using images from Proto-4F of our 8-camera 3D-360 scanner. A 3D model requires images from multiple perspectives, so for this model we scanned from 4 different locations: two scans from a high perspective with the scanner cameras at 6 feet, and two low scans with the scanner 3 feet above the floor. Once the scans were completed (all of the pictures have been taken and downloaded) the images from the 4 scans were processed using our automatic 3D reconstruction software. This processing resulted in 4 "point clouds" of 3D data: one point cloud for each scan. Next the 4 point clouds were aligned with each other to create a single "point cloud" of, in this case, 20 million points. Point clouds are a precise, but inefficient way to format and store 3D data. Point clouds for 3D data can be compared to the BMP format for 2D images. Just as compressed JPEGs are about 10x more efficient than uncompressed BMPs for storing 2D images, triangular meshes are a more efficient way to store 3D data than uncompressed point clouds. Meshes are efficient because a group of 3 points for a single triangle can replace thousands (or millions) of points if the points are in a plane. Decades of work from people around the world has resulted in mature procedures to generate meshes from point clouds. Our current meshing routine turned the 400 Mbyte "point cloud" of 20,000,000 points into a 20MB mesh of 24,000 triangles. In the future we will use more efficient meshing procedures that produce better meshes with even fewer triangles. After meshing we have a 3D model of the area that was scanned, but at this point the mesh is not photorealistic. We make the model photorealistic by "projecting" the original color images taken during the scanning process onto the mesh. This automatic process is called "texture projection," and when it is done well it results in a photorealistic 3D model. Texture projection works very well when everything is correctly aligned and registered, but alignment errors can rapidly build on each other and produce errors that make a model look bad. The alignment errors in this process come from several different sources in the calibration/scanning/processing pipeline: - Lens distortion correction errors inside each camera - Alignment errors between the left and right camera in each of the 4 pairs of cameras - Alignment errors between each of the 4 pairs of cameras - Alignment errors between the 4 scans These are all well defined problems that we are working on. We could proceed slowly and reduce the errors by recalibrating the existing Proto-4F 3D-360 camera system. This approach would take weeks and it could cut the errors in half a few times, but it cannot correct the built-in limitations of our current lenses and calibration facility. Another option is to build on our two plus years of experience with the Proto-4x family and design a new Proto-5x series. The new design will have more lenses, higher resolution sensors, faster processors (ARM/AMD Fusion/Tegra/FPGA/other?), and it will be calibrated with a 10x larger "calibration bunker." I am currently working on Proto-5x designs, and a key characteristic may be to increase the number of cameras from the current 8 to 32, or even as many as 100. A large array of inexpensive lenses can cost less and outperform a small number of expensive lenses. The trick is to design a manufacturable and and inexpensive array of sensors, lenses and processors. While a design with up to 100 camera may sound extravagant, remember that the fly's eyes have over 1,000 lenses: Because Proto-5x will require the design, layout, fabrication and testing of a new camera/processor board, this approach will take at least four months. Software porting, calibration, and testing could add another 4 to 8 months to the process. Depending on the final design, the Proto-5x family could reduce the errors by a factor of 10 or more.

First Low Resolution 3D Point Cloud from Proto-4F

October 25th, 2010 Comments off
The cameras are finally calibrated, and the communications and power systems are installed and working. Now I can finally begin producing scans to test and fine tune the software. 7-shot Today I scanned part of the lab, and the animated GIF illustrates the 3D nature of the scan. When producing a 3D model, multiple perspectives must be captured to fill in occlusions (blind spots). For this model, three scans from different locations were merged to produce a point cloud. The GIF consists of 7 different screen-shots of the point-cloud. While there are still occlusions, many have been filled. For example, notice that you can see both above and below the table. The original 32-bit software that we use to turn pictures into 3D models is almost 5 years old, and it runs on 32-bit Windows XP. The old software often crashes when processing high resolution images because the 2GB memory limit isn't enough to process the gigabytes of data that our scanner can quickly produce. Today's scan was made on a computer running 64-bit Windows 7, and we are currently replacing the old 32-bits software with more advanced 64-bit code. The new software runs much faster in 64-bit mode because it can keep temporary files in RAM instead of writing them to and reading them from a slow disk. Even using a Solid State Drive (SSD) wastes minutes of unnecessary processing. COMING UP: Much better scans processed by SketchUp & posted into Google Earth.